Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aichholzer, Oswin; Wang, Haitao (Ed.)Quantum topology provides various frameworks for defining and computing invariants of manifolds inspired by quantum theory. One such framework of substantial interest in both mathematics and physics is the Turaev-Viro-Barrett-Westbury state sum construction, which uses the data of a spherical fusion category to define topological invariants of triangulated 3-manifolds via tensor network contractions. In this work we analyze the computational complexity of state sum invariants of 3-manifolds derived from Tambara-Yamagami categories. While these categories are the simplest source of state sum invariants beyond finite abelian groups (whose invariants can be computed in polynomial time) their computational complexities are yet to be fully understood. We first establish that the invariants arising from even the smallest Tambara-Yamagami categories are #P-hard to compute, so that one expects the same to be true of the whole family. Our main result is then the existence of a fixed parameter tractable algorithm to compute these 3-manifold invariants, where the parameter is the first Betti number of the 3-manifold with ℤ/2ℤ coefficients. Contrary to other domains of computational topology, such as graphs on surfaces, very few hard problems in 3-manifold topology are known to admit FPT algorithms with a topological parameter. However, such algorithms are of particular interest as their complexity depends only polynomially on the combinatorial representation of the input, regardless of size or combinatorial width. Additionally, in the case of Betti numbers, the parameter itself is computable in polynomial time. Thus while one generally expects quantum invariants to be hard to compute classically, our results suggest that the hardness of computing state sum invariants from Tambara-Yamagami categories arises from classical 3-manifold topology rather than the quantum nature of the algebraic input.more » « less
-
Abstract For a finite group , a ‐crossed braided fusion category is a ‐graded fusion category with additional structures, namely, a ‐action and a ‐braiding. We develop the notion of ‐crossed braided zesting: an explicit method for constructing new ‐crossed braided fusion categories from a given one by means of cohomological data associated with the invertible objects in the category and grading group . This is achieved by adapting a similar construction for (braided) fusion categories recently described by the authors. All ‐crossed braided zestings of a given category are ‐extensions of their trivial component and can be interpreted in terms of the homotopy‐based description of Etingof, Nikshych, and Ostrik. In particular, we explicitly describe which ‐extensions correspond to ‐crossed braided zestings.more » « less
An official website of the United States government
